您的当前位置:首页>创新 > 正文

我国科学家首创蛋白质动态结构AI建模方法

  • 2022-12-09 15:42:51 来源:科技日报


(资料图片)

科技日报记者 刘园园

西湖大学12月8日公布,该校人工智能(AI)讲席教授李子青团队与厦门大学、德睿智药合作,首创研发了能够刻画蛋白质构象变化与亲和力预测的AI模型——ProtMD。

这是第一个尝试解析蛋白质动态构象的人工智能方法,可辅助药物化学专家更加精准地筛选出高活性小分子,从而加速临床前药物研发。相关研究成果发表在《尖端科学》期刊。

李子青介绍,此前谷歌旗下公司研发的“阿尔法折叠2”能够利用人工智能准确预测蛋白质的三维结构,对结构生物学、药物设计乃至整个科学界都产生了巨大影响。但“阿尔法折叠2”只能预测蛋白质在一个瞬间的静态结构,尚未能解决蛋白质结构动态变化的预测。

李子青团队此次开发的AI模型,给定药物分子和靶点蛋白,可预测药物分子与生物体内靶点蛋白质结合(柔性对接)后蛋白质结构的变化过程,推断药物与靶标蛋白结合的稳定性,预测药物功能,从而提升AI药物设计的精度和效率。

蛋白质构象变化轨迹建模(左框)以及模型用于药物分子亲和力预测和配体功效预测(右框)。图片来源:西湖大学

研究团队首先从57651个人类蛋白结构中选取具有代表性的数十个蛋白质结构对其进行分子动力学模拟,获取蛋白质的空间运动轨迹,建立蛋白质动态构象的模型。在预训练环节,研究团队要求模型能够基于上一时刻的蛋白构象预测下一时刻的蛋白构象;同时训练模型对不同时刻蛋白质顺序的排序能力,使其能对时序被随机打乱的蛋白质构象进行排序。实验表明,该AI模型在药物-蛋白亲和力预测任务上,轻量级版本表现已超过现有的最优模型。

“预测蛋白质结构的动态变化,对理解生命过程、研发新型药物都有着重要意义。”李子青说,尤其在AI药物设计中,通过对药物分子与靶点蛋白结合后的动态结构变化进行预测,评估药物-靶点结合亲和力和药物效果,是提高AI药物筛选准确性和效能的重要思路。

标签: 人工智能 药物设计 蛋白质构象

推荐阅读

我国科学家首创蛋白质动态结构AI建模方法

科技日报记者刘园园西湖大学12月8日公布,该校人工智能(AI)讲席教授李子青团队与厦门大学、德睿智药合...

世界看点:什么是生物多样性?有何保护意义?

当地时间7日,联合国《生物多样性公约》第十五次缔约方大会第二阶段会议在加拿大蒙特利尔正式开幕,简称...

热门看点:仫佬族:稻米百变美味多

献稻穗、踢竹球、打竹梆……11月18日,广西壮族自治区罗城仫佬族自治县以丰富多彩的民俗活动庆祝依饭节...

今日报丨大雪:冬天的精灵

“节气今朝逢大雪,清晨瓦上雪微凝”,大雪犹如冬天的精灵,纷纷扬扬,翩翩起舞,一片片晶莹的雪花像花...

快播:冬日到 南瓜俏

俗话说,“冬天到,南瓜俏”。在这日渐寒冷的季节里,人们猛然发现,餐桌上几乎少不了南瓜的身影。南瓜...

猜您喜欢

【版权及免责声明】凡注明"转载来源"的作品,均转载自其它媒体,转载目的在于传递更多的信息,并不代表本网赞同其观点和对其真实性负责。亚洲科技网倡导尊重与保护知识产权,如发现本站文章存在内容、版权或其它问题,烦请联系。 联系方式:8 86 239 5@qq.com,我们将及时沟通与处理。

业界