您的当前位置:首页>资讯 > 正文

魔改CNN揭秘宇宙大爆炸:物理学的核心是对称性

  • 2022-02-05 16:48:07 来源:凤凰网

宇宙大爆炸刚刚发生的那几秒是什么样的?

这可以说是物理学领域中最复杂的问题之一了,就以大爆炸刚刚发生的几百万分之一秒内,宇宙的一种特殊的存在形态为例。

这是一种超高温下的“完美液态”,对探索宇宙本源物质的结构和环境有着及其重大的意义。

在实验室中,必须要在15万倍太阳中心温度的严苛环境下才能成功模拟这一形态。

要对这这种高度复杂的物理学形态进行分析或处理,超级计算机需要极长的时间逼近其形态,经典的AI或CNN也很难基于其中的物理学概念作出有意义的解释。

但现在,物理学顶刊PRL上的一篇论文提出了一种叫做L-CNN的新型神经网络结构,很好地解决了上面的问题:

如何处理规范不变量

在我们深入了解L-CNN的结构之前,先来明确一个事实:

传统AI和CNN做不到的任务到底是什么?

以开头提到的“完美液态”为例,这种形态是指在极高能量和温度下,质子和中子被拆解,并重新结合成一种叫做夸克胶子等离子体(QGP)的新型物质形态。

(最初物质形成之前的整个宇宙都是这种形态)

当引入AI对QGP形态进行分析和解构时,就必须要考虑其规范对称性(Gauge Symmetry)。

规范对称性是指用不同方法描述同一件事件,比如,我们可以用一对相位和电磁场势描述一个电子-光子系统,也可以用另外一对来描述,这两个描述应该给出同一个物理实质。

而物理量都是规范不变的,因此,看上去用不同的数学方式描述的粒子场及其相互作用力,或许实际上就是相同的物理状态。

传统CNN很难计算或分析这些规范不变量,自然就无法得到有意义的计算机模拟结果。

而开头提到的新方法L-CNN全名格点规范等变(Lattice Gauge Equivariant)神经网络,是一种全新的,可以对传统CNN无法处理的规范不变量进行计算或分析的方法。

整个方法是基于格点规范场论(Lattice gauge theory)实现的。

在格点上,规范不变量通常是以不同形状的威尔逊环(Wilson Loop)来进行描述。

具体的,加入一个新的卷积层,能在连续的双线性层中形成任意形状的威尔逊环,同时保留规范等价性(Gauge Equivariance)。

而所有可收缩的威尔逊环的集合都可以通过上述方法生成,再加上来自非收缩环路的拓扑信息,原则上就可以重构所有的规范连接

有了这样的神经网络,就有可能对多个物理学的复杂系统进行预测。

论文作者Andreas Ipp还用夸克胶子等离子体举了个例子:

比如,L-CNN不用详细计算每一个中间步骤,就能估计夸克胶子等离子体在以后某个时间点的样子。

同时,它也能确保系统只产生与规范对称不矛盾的结果,也就是至少在原则上有意义的结果。

这是以前所有的计算方法都很难做到的,L-CNN无疑为模拟复杂物理现象提供了一种新思路。

未来,它还会为探索生命体最初瞬间存在的环境、理解宇宙中物质的本源状态,以及黑洞、大统一理论的研究提供更多的帮助。

作者介绍

论文共有四位作者,都来自维也纳科技大学(TU Wien)的理论物理研究所。

其中右下角为论文的通讯作者David I. Müller,为维也纳科技大学理论物理研究所的博士后,主要研究领域为高能物理学、格点规范场、机器学习。

标签: cnn 形态 物理学 对称性 论文 宇宙 规范 等离子体 胶子 物质

推荐阅读

吉利控股的沃尔沃汽车将在瑞典新建电池工厂

新工厂将生产专为下一代纯电动沃尔沃和极星汽车而开发的最先进的电池。

有史以来第一个流浪黑洞被发现:“龟速爬行”

以大约45公里 秒的速度在宇宙中“踽踽独行”。

北京冬奥会这台大白机器人大受欢迎 外国运动员晒体验视频

这几台是来自九号公司旗下九号机器人品牌的九号方糖配送机器人

猜您喜欢

【版权及免责声明】凡注明"转载来源"的作品,均转载自其它媒体,转载目的在于传递更多的信息,并不代表本网赞同其观点和对其真实性负责。亚洲科技网倡导尊重与保护知识产权,如发现本站文章存在内容、版权或其它问题,烦请联系。 联系方式:8 86 239 5@qq.com,我们将及时沟通与处理。

业界