您的当前位置:首页>科技快讯 > 正文

总编辑圈点|效仿人脑节能、高效特性:可用于AI的大型类脑神经网络实现 全球观焦点

  • 2023-05-10 06:12:21 来源:科技日报


【资料图】

科技日报记者 张梦然

在《自然·机器智能》杂志上发表的一项新研究中,荷兰国家数学与计算机科学研究所(CWI)科学家展示了类脑神经元如何与新颖的学习方法相结合,能够大规模训练快速节能的尖峰神经网络。潜在的应用包括可穿戴人工智能(AI)、语音识别、增强现实等诸多领域。

示意图图片来源:荷兰国家数学与计算机科学研究所

这种尖峰神经网络,可在称为神经形态硬件的芯片中实现,有望使AI程序更贴近用户。这一解决方案有利于保护隐私、提高稳健度和响应能力,其应用范围从电器中的语音识别、医疗保健监控、无人机导航,到本地监控设备。

就像标准的人工神经网络一样,尖峰神经网络也需要训练才能流畅地执行这些任务。然而,这种网络通信方式也带来了严峻的训练挑战,因为它们无法与人类大脑的学习能力相提并论:大脑可以很容易地从新体验中完成学习,改变连接,甚至建立新的连接;大脑所需的“范本”很少,但学到的却很多;大脑学习新事物时也非常节能。

为了达到与人类大脑接近的程度,新的在线学习算法可直接从数据中学习,实现更大的峰值神经网络。在研究人员展示中,底层尖峰神经网络SPYv4经过训练,可在阿姆斯特丹一条繁忙的街道上区分骑行者、步行者和汽车,并准确指示它们的位置。

研究人员表示,以前,他们可训练超过10000个神经元的神经网络;现在,对于拥有超过6百万个神经元的网络,他们也能很容易地训练。

有了基于尖峰神经网络的强大AI解决方案,研究人员正在开发能以非常低的功率运行这些人工智能程序的芯片,这些芯片最终将出现在许多智能设备中,如助听器和增强/虚拟现实眼镜。

总编辑圈点:

现代人工神经网络是当前AI革命的支柱,但它们实际上是受到真实生物神经元网络(如人类大脑)启发的产物。诚然,大脑是目前任何AI也无法比拟的——网络更大、工作起来更节能,并且在被外部事件触发时,能更快地作出反应。如何更贴近真实的大脑?那就是更逼真地效仿生物神经元的工作。科学家们发现,人类神经系统的神经元通过交换电脉冲进行通信,而尖峰神经网络凭借着对这一点的模仿,成为了本研究中特殊类型的神经网络。

标签:

推荐阅读

总编辑圈点|效仿人脑节能、高效特性:可用于AI的大型类脑神经网络实现 全球观焦点

荷兰国家数学与计算机科学研究所(CWI)科学家展示了类脑神经元如何与新颖的学习方法相结合,能够大规模训

韦伯望远镜发现系外恒星有3道尘埃环_报资讯

天文学家利用詹姆斯·韦伯空间望远镜观察太阳系外恒星“北落师门”周围尘埃,结果发现共有3道尘埃环围绕...

关于外来入侵物种福寿螺,你真的了解吗?

“这东西又来了!这是今天新出现的,感觉又产了好多。”湖北省武汉市城区的一个公园内,公园管护人员指...

国家林草局:到2025年将新建90个国家陆地生态系统定位观测研究站|每日时讯

日前,国家林业和草原局印发《国家陆地生态系统定位观测研究站发展方案(2023—2025年)》。

热头条丨第十二届中国创新创业大赛启动 11年来撬动金融资本累计投资企业超千亿元

11年来,中国创新创业大赛累计参赛企业和团队超过28万家,撬动银行、创业投资等金融资本累计投资企业超过千

猜您喜欢

【版权及免责声明】凡注明"转载来源"的作品,均转载自其它媒体,转载目的在于传递更多的信息,并不代表本网赞同其观点和对其真实性负责。亚洲科技网倡导尊重与保护知识产权,如发现本站文章存在内容、版权或其它问题,烦请联系。 联系方式:8 86 239 5@qq.com,我们将及时沟通与处理。

业界