(相关资料图)
科技日报实习记者 张佳欣
美国杜克大学工程师已开发出一种可伸缩的柔软表面,其可不断地自我重塑,以模拟自然界中的物体。依靠电磁驱动、机械建模和机器学习形成新的构型,该人造表面甚至可学习适应破碎的元件、意外的约束或变化的环境等障碍,未来或可应用于柔性机器人、增强现实、仿生材料和特定主题的可穿戴设备。这项研究发表在21日的《自然》杂志在线版上。
研究人员表示,此次的表面是可编程的,配备了设计好的活性元件的柔软表面可在几个形状之间变换形状,就像一张折纸,对光、热或其他刺激的触发作出反应。
为了创造这样的表面,研究人员首先布置了一个横梁网格,由一层薄薄的金层制成,包裹着一层薄聚合物。单个梁只有8微米厚,大约是棉纤维的厚度,宽度不到1毫米。它们十分轻盈,磁力可很容易、快速地使其变形。
为了产生局部力,该表面被置于一个低水平的静态磁场中。电压变化沿着金色网格产生复杂但易于预测的电流,从而驱动网格的平面外移。
研究人员称,这是第一个速度足够快的人造软表面,可准确地模拟自然界中连续的变形过程。一个关键的进步是结构设计,它实现了电输入和所产生的形状之间不寻常的线性关系,从而很容易弄清楚如何施加电压来实现各种各样的目标形状。
新的“超构表面”展示了一系列变形和模仿技能。它创造的凸起在表面上上升和移动,就像毯子下的猫试图找到出路一样。有了监控变形表面的摄像头,超构表面也可自己学习重新创造形状和图案。通过缓慢地调整施加的电压,学习算法接受3D成像反馈,并计算出不同的输入对变形表面的形状有什么影响。
由于表面能通过试错来自学,它也能适应损坏、意外的物理限制或环境变化。在一次实验中,它很快学会了模仿鼓起的土堆,尽管它的一根横梁被切断了。另一次实验中,尽管网格的一个节点上被施加了重量,但它还是设法模仿出类似目标的形状。
展望未来,研究人员希望创建具有集成形状感知功能的机器人超曲面,以执行对自然界复杂、动态表面的实时形状模拟,如水波、鱼鳍或人脸。该实验室还考虑在原型中嵌入更多组件,如车载电源、传感器、计算资源或无线通信功能。
标签:
美国杜克大学工程师已开发出一种可伸缩的柔软表面,其可不断地自我重塑,以模拟自然界中的物体。依靠电...
以色列特拉维夫大学研究人员首次破译了一种使皮肤癌转移到大脑的机制,并利用现有的治疗方法成功地抑制...
身处能源危机和气候目标的夹缝之中,包括日本、德国、比利时等国在内的多个国家重新燃起了对核电的兴趣...
人类有史以来第一个行星防御任务即将执行。据英国《新科学家》杂志网站20日报道,执行美国国家航空航天...
英国《自然》杂志21日发表的一篇工程学论文,英国科学家团队展示了一组受动物启发的飞行机器人,可以在...