您的当前位置:首页>创新 > 正文

AI赋能医学影像:让潜在疾病无处逃遁

  • 2022-04-29 15:02:45 来源:科普时报

李竞萌

新冠疫情防控期间,病毒核酸测定会受到多种人为因素影响,也曾有病例被误诊出现假阴性或假阳性的结果。而CT影像识别采用大型、恒定的医疗设备,不会受到过多人为环节操作影响,相对稳定。国家卫健委在发布的《新型冠状病毒肺炎诊疗方案》中明确提出核酸检测结果应与CT影像临床诊断结果相互辅助,作为新冠肺炎确诊病例的判断标准。

一位新冠肺炎病人的二维CT影像约300张,且早期CT影像特点为肺部多发小斑片状磨玻璃影等细微变化,如果完全以医生的肉眼分析,一个病例就需要耗时约5—15分钟,大范围病毒筛查,工作量之大更是不敢想象。借助AI深度学习功能加持,医生可以将新冠肺炎的最新诊疗方案、权威团队关于新冠肺炎患者临床特征的研究成果、成千上万个确诊病例的CT影像样本数据全部输入智能数据库,快速鉴别新冠肺炎影像与普通病毒性肺炎影像的区别,最终识别准确率在90%以上。

新冠肺炎病毒医学影像筛查加入AI技术后,系统每处理识别一个病例的高清晰度CT数据平均只需不到20秒。如果增加服务器的数量,还可以继续提升速度到几秒以内,这为大批量病例数据快速筛查提供了可能性。一旦发现疑似病例,系统会自动对可疑区域进行重点识别,统计各个肺部解剖结构中肺炎区域所占的比例,为医生进一步决策提供详细的定量数据。更具参考价值的是,系统会自动调取并快速显示该病例之前所拍摄的CT影像,将重点病灶区域的历史情况进行动态解算和对比呈现,利用AI的大数据处理能力做到全病程自动关联,为动态、精确、量化监控病情保驾护航。

随着人工智能向深度学习领域深耕,医疗影像识别成为继无人驾驶、人脸识别之后,又一个与AI能够精准适配的应用新场景。因为医疗数据相对标准化且影像识别的底层逻辑较为明确,即能否看到结节、斑块等待标记的病灶,这种情况非常适合人工智能去深度学习。

当然,如今的AI医疗影像技术还有很多认知盲区,只能作为辅助诊疗参考,并不能完全取代经验丰富的医生,还需要持续优化完善。

2020年起,中国科技馆启动了数字馆藏项目,特别收藏了“达摩院AI抗疫”作品,即国内首张利用AI识别新冠肺炎的CT影像。这一行动向人们传递着这样一个信号:随着云计算、人工智能、区块链等数字技术在我们的传统生活场景中的深度融合,在不远的未来可以看到更多病症的医学影像诊断都可以用AI赋能,甚至为人们提供一座智慧化医院,进一步解决医疗资源分配不平衡、不充分的问题,成为更多家庭的健康护盾。

(作者系中国科技馆科普影视中心讲师)

标签: 人工智能 医学影像 中国科技馆

推荐阅读

AI赋能医学影像:让潜在疾病无处逃遁

李竞萌新冠疫情防控期间,病毒核酸测定会受到多种人为因素影响,也曾有病例被误诊出现假阴性或假阳性的...

6 亿年前的“大球”或是原生生物

张渊张兴亮在我国贵州瓮安地区发现的瓮安生物群,是埃迪卡拉纪(距今6 35—5 38亿年前的地球演化历史...

多地暴雨继续 五一全国天气如何 中央气象台专家详解

科技日报记者 付丽丽据中央气象台消息,受冷空气影响,27日晨,吉林、辽宁、北京、河北部分地区出现...

雅鲁藏布江流域多圈层水文监测网建成

25日,记者从中科院青藏高原研究所获悉,来自该所等单位的研究人员通过对雅鲁藏布江流域的系统监测,并...

“北斗+”助力黄黄高铁智能建设

将北斗定位技术引入测量装置,并用于高铁施工中,以提高高铁施工工艺和质量,这是“中国北斗”和“中国...

猜您喜欢

【版权及免责声明】凡注明"转载来源"的作品,均转载自其它媒体,转载目的在于传递更多的信息,并不代表本网赞同其观点和对其真实性负责。亚洲科技网倡导尊重与保护知识产权,如发现本站文章存在内容、版权或其它问题,烦请联系。 联系方式:8 86 239 5@qq.com,我们将及时沟通与处理。

业界